

1

XII. INTEGRATING ANALYSIS INTO
A WAREHOUSE DESIGN WORKFLOW

Leon F. McGinnis
Timothy Sprock

The Georgia Institute of Technology

School of Industrial & Systems Engineering
Atlanta, GA 30332-0205 USA

Abstract

 Supply chain analyses, including those related to material handling systems,
are typically purpose-built to answer specific questions and therefore have many
different implementations depending on the question, the instance data, and the
solver. The purpose-built nature of these models makes it difficult to integrate
them into an iterative design workflow. Despite the myriad analysis
implementations, the fundamental structure of these systems and their problem
domain remains unchanged, suggesting that perhaps analyses could be
automatically generated on demand, given an appropriate specification of the
particular system to be analyzed. We apply model-based systems engineering
(MBSE) methodologies to explore this possibility in the context of functional
warehouse design.

1 Introduction
The domain of industrial engineering is broad, but a large segment of that domain can be
described as discrete event logistics systems or DELS. These are systems consisting of a
network of resources through which units of handling flow and are transformed by those
resources performing processes with distinct start and end times. The resources might be
machine tools and the units of handling might be blanks transformed to machined parts; the
resources might be transport devices and warehouses, and the units of handling might be pallets
of goods transformed from one location to another; the resources might be health care providers
and the units of handling might be people transformed from “sick” to “healthy”.

Industrial engineering research offers many tools and methods for analyzing DELS, but
widely accepted generic design methods—and in particular, tool chains—for designing DELS
have remained elusive. Some ideas for modeling and designing warehouses and material
handling systems are presented in [1] and [2]. [1] explores the fundamental changes that model
driven architecture (MDA) methodologies would bring to the engineering of material handling
systems and discrete event logistics systems (DELS) in general.

This paper addresses the problem of translating design methods into tool chains to support
warehouse design decision making. Specifically, we focus on applying current research on

formal domain modeling for the DELS and creating model-to-model (M2M) transformations to
provide designers with automated access to design-specific analysis tools. Our goal is to show
that analysis methods can be made computational within a generic tool chain to support design
decision making. [2] proposes a methodology for creating a warehouse design by focusing on
formalizing the semantics of warehouse requirements, functional design, and embodiment
design. The formalism presented there is intended to bridge the gap between process oriented
research on warehouse design and mathematical approaches. This paper will start with that
formalism, and modify and extend it to allow automated analysis model generation, an essential
requirement for creating a true warehouse design tool chain.

The remainder of this paper is organized as follows: section 2 reviews the design process for
material handling systems; section 3 discusses formal domain modeling, and in particular
introduces the functional requirements network (FRN); section 4 provides useful analysis of
FRNs to support the design process with supporting use cases; and section 6 concludes with a
discussion of future research opportunities.

2 Design Process for Material Handling Systems
Design is the specification of an artifact intended to accomplish specific goals, using a primitive
set of components and subject to constraints [3]. Conceptually a design methodology should
provide a structure to the design space, support generating alternative designs within that space,
provide methods to effectively search the space, and enable the analysis of alternative designs
with regard to criteria and constraints. Because there are few constraints imposed upon the
design and configuration of a specific warehouse, the design space tends to be rather large and
unstructured and therefore difficult to search. This difficulty results in ad-hoc approaches to the
design process, which rely on the tacit knowledge of experts and reuse of existing, tested designs
that have been deemed successful.
 In recent years, there has been some progress toward the goal of developing computer aided
warehouse design methods and tools. For example, there is now a large body of research on
analytic models to support specific design decisions (see, e.g., [4] for a thorough literature
review). There have been a number of investigations of the warehouse design process itself,
including empirical studies [5]–[7], as well as attempts to formalize the process [8]–[14].

To bridge the gap between process-oriented research on warehouse design and the
mathematically oriented approaches, McGinnis [2] proposes an object-oriented and axiomatic
warehouse design methodology. In this proposed methodology, the design process is structured
as two distinct phases: functional design, which specifies what must be done in the warehouse—
its functions—to fulfill its mission, and embodiment design, which specifies how the functions
will be implemented—the systems—and what resources will be required.

The design process consists of first understanding the context of the system being designed,
then performing functional requirements analysis, functional design, and finally embodiment
design. The context of the warehouse is the interaction of the warehouse with its external
environment, i.e., the flows of goods in (INFlow) and out (OUTFlow) of the warehouse. The
second step, functional requirements analysis, characterizes these flows to understand the
requirements for consuming the INFlow and producing the OUTFlow. This results in a
requirements profile, i.e., the capabilities and their respective capacities that are required for the
warehouse to perform its intended function.

Functional design is the “essence of the warehouse design problem”. This step in the design
process specifies the transformation processes that take place within the warehouse at a
functional level. This contrasts with traditional design methodologies that attempt to specify the

resources and policies that should be utilized to accomplish a specific set of transformations.
Finally, the embodiment design specifies how the functional design will actually be executed by
allocating those functions to systems and configuring those systems with the necessary resources
and policies to execute their respective functions.

Ultimately this design process focuses on formally identifying the capability requirements of
the warehouse, establishing the essential functions the warehouse must perform, and then
embodying these functions in a system specification, which includes configuring a specific set of
resources with specific behaviors to provide specific capabilities. A formal specification of the
system design provides an essential foundation for integrating analysis tools throughout the
design process.

3 Modeling Material Handling Systems
McGinnis [1] explores the fundamental changes that model driven architecture (MDA)
methodologies would bring to the engineering of material handling systems, and discrete event
logistics systems (DELS) in general. This section will discuss recent advances in applying MDA
approaches to modeling and analyzing DELS including formal domain modeling and model
transformation methodologies.

3.1 Formal Domain Modeling with SysML
 Formal domain modeling has been used in software engineering for designing and
developing systems, and relies on domain specific languages (DSLs) and visualization to enable
a systems engineer to focus on abstract modeling of the target domain [15]. In 2006, OMG
published the initial standard for the Systems Modeling Language, or SysML, [16] to create a
general-purpose modeling language for systems engineering applications. Using SysML, it is
possible to capture the structure, behavior, dynamics, and requirements of a system; furthermore,
all four of these modeling aspects are derived from the same underlying specification of the
system. SysML has proven to be a powerful modeling language for system applications in a
diverse range of engineering domains, such as electrical, mechanical, and industrial [17]–[22].
 To tailor the modeling language to a specific domain, SysML provides two mechanisms for
creating DSLs: model libraries and profiling [23]. Prior research has established the application
of this methodology for creating a DSL in SysML, describing the system of interest using the
DSL, and finally transforming a description of a system model specified using the DSL into a
target analysis language, such as discrete event simulation [24]–[27].
 As a complement to the DSL, a reference architecture provides a template for stakeholders to
reuse in creating other system architectures in the same domain. Cloutier et al. [28] suggest that
patterns are one means to document reference architectures, since patterns are well recognized
for their capability to make implicit knowledge explicit. A reference architecture for material
handling systems would provide formally defined semantics for specifying the design of a
particular system and a platform on which to construct automated access to analysis tools.

3.2 Automated Generation of DES
Due to the inherent complexity of MHSs, analytic models are often intractable and require
significant assumptions to model the observed “real world” behavior. In the design context,
discrete event simulation is an attractive option for evaluating the expected behavior and
performance of the system of interest. However, there are significant hurdles to building,
running, and analyzing simulation models due to the range of simulation analysis tool

capabilities and characteristics [29]. As a result, simulation is usually done only once, for the
final design selected, rather than done routinely in the course of searching the design space.

The thesis explored in this paper is that by adapting the MDA approach from software
engineering, augmented by the use of patterns, we can make simulation more readily accessible
to the designer throughout the design workflow. Naturally, this requires providing the designer
with a tool chain that has the functionality required to specify the functional and embodiment
designs.
 MDA advocates the creation of a platform-independent model of software at a higher level of
abstraction than the target code or hardware, which can be transformed as needed into platform-
specific (particular programming language and hardware) and executable models; adapting MDA
would separate the development of a DELS design model from its analysis using a specific
simulation software package; the analysis implementation would be constructed automatically by
a reusable model to model (M2M) transformation. Current M2M methods, such as QVT [30] or
MOFM2T [31], can execute transformations from SysML to an XML or structured text
specification of the target analysis, e.g., AnyLogic™ [32] or SimEvents™ [33] respectively.
However, the difficulties that arise in applying current M2M methodologies for code generation
to generating discrete event simulation, led to our development of model generation techniques
based on creational software patterns [34]. This transformation methodology utilizes object
oriented programming methods coupled with a network abstraction to automatically create
discrete event simulations for the DELS domain. A critical step in implementing these ideas is
the abstract and formal specification of the functional requirements network.

3.3 Functional Requirements Network
The primary function executed by a warehouse is to transform an inbound stream of
replenishment shipments, its INFlow, into a stream of outbound fulfillment shipments, its
OUTFlow. However, the exact transformation process depends on the nature of the inbound and
outbound streams and thus lacks a single universal specification. Therefore the functional design
stage focuses on specifying the structure of this transformation process. McGinnis [2] and
Govindaraj et al. [35] have proposed capturing the resulting structure as a functional
requirements network (FRN), which consists of warehouse functions captured as logical nodes
and flows captured as the edges between those functions. In this section, a formal definition of
the FRN is captured as a reference architecture, which consists of three components specified
using SysML: 1) a profile for token flow networks, a subclass of the classical network definition;
2) a definition of the node and edge components of the functional requirements network; and 3) a
pattern for the specification of flow throughout the FRN.

The network abstraction is common throughout the DELS domain and it provides access to a
well-understood analysis framework and the associated tools. The token flow network (TFN)
[36] extends the basic network definition to provide formal semantics for flow and behavior
within a network. The TFN provides flow network semantics for specifying the FRN (Figure 1).
In addition to extending the definition of nodes and edges to flow nodes and flow edges, the TFN
introduces the concept of a token as an abstract semantic for any entity that can move through
the network. An example of the token semantics is that a SKU sitting in stock is required by an
orderline corresponding to an order. Each of these levels of aggregation can be thought of as an
independent token flowing through the network depending level of granularity desired during the
design process. The flownode defines what is consumed and produced by the transformation
process; i.e. a mixed pallet assembly node will consume n cartons and produce m mixed pallets.

The flow edge restricts what types of tokens flow across it; e.g., the flow from a RCVpallet node
to palletSTORE node will be restricted to tokens for which the UoH is a pallet.

Figure 1 Subset of Token Flow Network Definition

“The functions of a warehouse are abstract processes which make abstract changes to an
abstract flow” [2]. Figure 2 consolidates the process and flow definitions presented in McGinnis
[2] with the TFN profile applied to provide the network structure. However, there are two
extensions: 1) family is the superclass of order family and SKU family, which are specified
during the functional requirements analysis process, and provides an additional level of
aggregation, and 2) Flow can be subclasses into INFlow and OUTFlow, with their origin and
destination redefined to supplier and customer nodes respectively. This unifies all the FRN
semantics specified in the original paper.

Figure 2 Functional Requirements Network Definition

 The last component of the reference architecture for the FRN is an implementation pattern
for creating a FRN (Figure 3). This pattern captures several principles that are important to the
specification of the FRN and that support the warehouse design process:

• Each OUTFlow and INFlow are associated with a single Order Family and SKU family
respectively. Also, each OUTFlow must have a corresponding (order) Assembly function
and each INFlow must have a corresponding STORE function. (Axioms 5&6, [2])

• It provides a template for creating the flows that are incident to each function.
Throughout the design process, the FRN is constantly altered and refined by adding, removing,
and combining functional nodes. The pattern suggests what corresponding changes need to be
made to the set of edges when there is a modification made to the nodes.

Figure 3 An Implementation Pattern of the FRN

 The following example illustrates the usage of this pattern. Suppose a new SKU family is
introduced thereby creating a new INFlow, then automatically a new STORE node is required, as
well as flow edges from RECEIVE to STORE. In addition, the new STORE node requires the set
of flows incident to the STORE node; e.g., replicating the CartonSTORE node requires
replicating the CartonFlow edges to Mixed Pallet ASSEMBLY and Parcel SHIP.
 The reference architecture supports the system design process by providing a formal structure
to the FRN and patterns to accelerate the creation process and reduce mistakes. While only a
small subset of the TFN is used to specify the FRN, the complete specification is extensive and
supports the embodiment design process, which transitions a FRN into a system specification.
Moreover, the formal network abstraction is fundamental to providing automated access to
analyses and is the cornerstone of methodology for automatically generating discrete event
simulations presented in section 3.2.

4 Analysis of Functional Requirements Networks
A formal definition of the FRN is a useful tool because it can be used to develop methods for
executing the functional design process and integrating supporting analyses. It should be clear
that the ability to capture the functional design is not the same as having the ability to develop
the functional design. In this section we address the following questions:

• If automated access to analyses tools was available on demand, what analyses would be
useful in the design process?

• How would you incorporate the feedback from these analyses into the design process?

4.1 Design and Implementation of Analysis Tools
In the early stages of the design process, the capability and capacity requirements of the
warehouse can only be described in terms of the flows. Capability is related to the physical
requirements for handling and storing goods and orders, which are derived from the
characteristics defined by the functional requirements analysis. From figure 3, if pallets flow into
the warehouse through RCVpallet, then that function must have the capability to lift and move

pallets. Capacity, however, is derived from the flow rate data. Therefore, a fundamental analysis
for the FRN would be to determine the capacity requirement of each functional node by
computing the INFlows and OUTFlows.
 However, propagating all of the flows through the system is not a trivial task for two
intertwined reasons: 1) the flow of material into the warehouse is a push system, whereas the
flow of material out is a pull system driven by customer orders, which then suggests that 2), as
an example, it is more natural to specify that 75% of cartons flowing into MixedPallet
Assembly are picked from pallets in palletSTORE and 25% are mixed cartons from
MixedCarton Assembly (Figure 4). Because the FRN is specified as a network, the
transformation method described in section 3.2 can automatically generate a discrete event
simulation that is capable of answering the analysis question. Figure 4 and Table 1 demonstrate
the SimEvents [33] DES generated for a specific use case and the output results of the
simulation.

Figure 4 Discrete Event Simulation of a FRN generated in SimEvents

(Message Flows Omitted for Clarity)

 The specification of the use case is as follows: the system sees an OUTFlow of 1000 pallets /
unit time via LTL shipping and 5000 cartons / unit time via parcel ship. We specify the flows
into each functional node in the natural way described above; i.e. LTL order assembly sees an
OUTFlow of 1000 pallets and preliminary analysis indicates that 10% of those pallets will be
directly from pallet store and 90% will be mixed pallets from mixed pallet assembly. The results
of the simulation, Table 1, are merely estimates because they simplify the pallet to carton to each
consumption ratios by ignoring SKU composition, but nevertheless demonstrate the capability of
the analysis tool.

Table 1 Output Results of the DES

INFlow/OUTFlow of each UoH (Row Header) to/from each flow node (Column Header)

 PalletSTORE EachSTORE MP_Assy MC_Assy LTL_OA Parcel_OA
Pallets 1775/100 --- --- --- 100/1000 ---
MixedPallet --- --- 0/900 --- 900/0 ---
Carton 0/38,525 1775/0 33750/0 --- ---- 3000/5000
MixedCarton --- --- 225/0 0/1,725 --- 1500/0
Each --- 0/17,750 --- 17,250/0 --- 500/0

 Why generate a discrete event simulation to answer a rather simplistic analysis question? By
designing different but interchangeable analysis components to answer different questions,
answering different analysis questions is as simple as switching the analysis component types
that are generated within the DES. With a full suite of analysis components, the system engineer
will have the ability to automatically answer a wide range of questions about the current system
design and incorporate that feedback into the design process.

4.2 Incorporating Analysis Results into the Design Process
With relevant analyses accessible throughout the design process, the methodology itself can be
refined to incorporate that knowledge. Iterating the design process—functional requirements
analysis, then functional design, then embodiment design—allows incorporating new analysis
results into incremental improvements to the design. This section presents examples of
integrating analyses to improve the design process
 Functional requirements analysis focuses on discovering the important traits for creating
SKU and order families. It, however, does not provide an exact method for specifying the
families that lead to the optimal FRN. While some families, such as frozen items or pallet flows,
are obvious, the refinement of the family definitions is still considered an art. This presents an
opportunity to incorporate statistical methods such as factor analysis to iteratively refine the
family definitions to improve the system design. Whereas technology selection and configuration
is performed during embodiment design, often simple analyses performed during functional
design, such as estimating the necessary cycle time to achieve a desired throughput, can provide
insight into the feasibility of a particular functional design even before beginning the
embodiment design process.
 Access to simple, yet effective, analysis tools throughout each stage of the design process can
prevent costly rework. For example, suppose the design is initialized as follows: the system
receives pallets and stores them in a pallet store, and then cartons are picked from the pallet store
and assembled into mixed pallets to be shipped out by LTL. We may arrive at the embodiment
design and realize that the technology required to fulfill the requirements of the pick from
storage function is infeasible or too expensive; rather than make small ad-hoc changes to the
design, we would like to iterate and revise either the functional requirements specification or the
functional design. By returning to the functional requirements analysis, we determine that we can
divide the Carton SKU family into Heavy Cartons, which should be on the bottom of every
pallet; Fast Moving Cartons; and Slow Moving Cartons. The resulting FRN is depicted in Figure
5.

Figure 5 Incorporating Improvements to the SKU family specifications into the FRN

 As each step of the design process is dependent on the decisions made in the previous step, it
is often difficult to know whether a particular design decision, whether it is a specific portioning
of families or allocation of functions to systems, will result in good system performance.
Automated access to analyses provides a means to design in an iterative process by incorporating
or developing for new information at each stage of the design process. At the beginning of this

process, very little is known about the system, so the analyses that can be performed are simple
and possibly trivial. However, as the system design is refined and elaborated, the ability to
generate a DES to answer analysis questions becomes more valuable.

4.3 Transitioning to the Embodiment Design Phase
In addition to generating different analysis components, the generation of DES supports a natural
transition to the analysis of embodiment designs too. During this transition, the FRN is
partitioned into groups of functions which are then allocated to subsystems. One example may be
to group the pallet STORE, pick-carton-from-pallet RETRIEVE, and mixedPallet
ASSEMBLY functions into a single subsystem. This subsystem can be embodied as follows: the
picker uses a pallet jack to go through the pallet store to pick cartons and build a mixed pallet
during his tour. However, it can also be embodied as a subsystem where an ASRS brings cartons
from the storage area to the picker who then assembles a mixed pallet from a fixed position.
Even without the final resource and policy configuration, these subsystem specifications can then
be transformed into DESs to execute preliminary performance analyses and support the
embodiment design process (Figure 6).

Figure 6 Discrete Event Simulation of Embodied System Design Generated in SimEvents

 The allocation process provides a seamless transition from functional design to embodiment
design, and integrates the embodiment design process into the iterative design process. With the
ability to create and refine the embodiment design and generate simulations that reflect those
designs, the system engineer can quickly iterate the design process.
 Looking forward, the reference architecture presented above should be extended to define the
embodied subsystem itself. The subsystem specification should include the processes performed,
the resources used to execute those processes, as well as all the necessary policies and associated
control mechanisms; this establishes the services that the subsystem will provide to the system.

5 Conclusion
The design of material handling systems, and discrete event logistics systems in general, would
benefit from the implementation of a formal methodology to specify the system architecture and
the integration of analyses throughout the design process. Several methodologies have been
proposed to formalize the design process; however there still is a gap between the design and the
analysis of material handling systems. This paper introduces a method to bridge between the
design process and supporting analysis tools. The method has two components: the token flow
network provides a formal structure to the functional requirements network, which is the output

of the functional design process; and an automated transformation based on the token flow
network that generates simulation models to answer specific analysis questions about the
functional design.
 With analysis tools such as discrete event simulation accessible throughout the design
process, this research demonstrates a method to integrating those tools into the design workflow
itself. Even with simple analyses, such as flow rate analysis, the engineer can effectively
integrate that information to improve the system design and can support an iterative design
process.
 Throughout this paper, we have been careful to avoid suggesting that this methodology will
make design decisions and automate the design process. While many aspect of the design
process remain an art, we contend that having instantaneous access to performance and
behavioral information can improve the design process and the design itself. This suggests two
closely related extensions for future research
 One promising extension of this research would be to integrate the access to analytics
presented here with the empirically-based design approach presented in [5]. The most appealing
aspect to integrate would be their usage of matrix solution guides. Whereas their approach asks
the designer to analyze key parameters and then look up the empirically optimal technology
solution in a matrix, our methodology provides automated access to the required analysis.
 Another possible path would be to incorporate design principles into the reference
architecture as constraints, and then automate the usage of patterns and constraints from the
reference architecture to specify and search the design space. Since we design our systems and
analysis components for modularity, an intuitive extension would be to design a methodology
that is intended to assemble these components into meaningful systems. These methods are used
extensively in platform-based engineering and product line design, which are analogous to mass
customization in the manufacturing world.

References
[1] L. McGinnis, “The Future of Modeling in Material Handling Systems,” in 11th International

Material Handling Research Colloquium - 2010. Material Handling Industry of America, 2010.
[2] L. McGinnis, “An object oriented and axiomatic theory of warehouse design,” in 12th International

Material Handling Research Colloquium—2012. Material Handling Industry of America, 2012.
[3] P. Ralph and Y. Wand, “A proposal for a formal definition of the design concept,” in Design

requirements engineering: A ten-year perspective, Springer, 2009, pp. 103–136.
[4] J. Gu, M. Goetschalckx, and L. F. McGinnis, “Research on warehouse design and performance

evaluation: A comprehensive review,” European Journal of Operational Research, vol. 203, no. 3,
pp. 539–549, Jun. 2010.

[5] J. M. Apple, R. D. Meller, and J. A. White, “Empirically-based warehouse design: can academics
accept such an approach,” in 11th International Material Handling Research Colloquium - 2010.
Material Handling Industry of America, 2010.

[6] D. A. Bodner, T. Govindaraj, K. N. Karathur, N. F. Zerangue, and L. F. McGinnis, “A process
model and support tools for warehouse design,” in Proceedings of the 2002 NSF design, service and
manufacturing grantees and research conference, 2002, pp. 1–8.

[7] M. Goetschalckx, T. Govindaraj, D. A. Bodner, L. F. McGinnis, G. P. Sharp, and K. Huang, “A
review and development of a warehousing design methodology, normative model, and solution
algorithms,” in Proceedings of the 2001 Industrial Engineering Research Conference, Dallas,
Texas, 2001.

[8] B. Rouwenhorst, B. Reuter, V. Stockrahm, G. J. Van Houtum, R. J. Mantel, and W. H. M. Zijm,
“Warehouse design and control: Framework and literature review,” European Journal of
Operational Research, vol. 122, no. 3, pp. 515–533, 2000.

[9] L. McGinnis, “Developing a Reference Model for Warehouse Specifications,” presented at the IIE
Research Conference, Houston, TX, 2004.

[10] L. McGinnis, M. Goetsch, and G. Sharp, “A Comprehensive Model of Traditional Warehouse
Design,” in 9th International Material Handling Research Colloquium—2006. Material Handling
Industry of America, 2006.

[11] L. McGinnis, “Facility Design Workflow Management,” presented at the IERC, Vancouver,
Canada, 2008.

[12] G. Sharp, M. Goetschalckx, and L. F. McGinnis, “A systematic warehouse design workflow: focus
on critical decisions,” in 10th International Material Handling Research Colloquium - 2008.
Material Handling Industry of America, 2008.

[13] M. Goetschalckx, L. F. McGinnis, and G. Sharp, “Modeling Foundations for Formal Warehouse
Design,” in 10th International Material Handling Research Colloquium - 2008. Material Handling
Industry of America, 2008.

[14] F. Friemann, M. Klennert, and L. F. McGinnis, “Model Based Systems Engineering in Warehouse
Analysis and Design,” presented at the IERC, Cancun, Mexico, 2010.

[15] S. A. Friedenthal, R. Griego, and M. Sampson, “INCOSE Model Based Systems Engineering
(MBSE) Initiative,” presented at the INCOSE 2007 Symposium, San Diego, 2007.

[16] OMG SysML 2012, “OMG Systems Modeling Language Version 1.3.” Object Management Group,
2012.

[17] E. Huang, R. Ramamurthy, and L. F. McGinnis, “System and simulation modeling using SysML,”
in Proceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come,
2007, pp. 796–803.

[18] T. A. Johnson, C. J. J. Paredis, R. Burkhart, and J. M. Jobe, “Modeling continuous system dynamics
in SysML,” in 2007 ASME International Mechanical Engineering Congress and Exposition, 2007.

[19] R. S. Peak, R. M. Burkhart, S. A. Friedenthal, M. W. Wilson, M. Bajaj, and I. Kim, “Simulation-
based design using SysML—part 1: a parametrics primer,” in INCOSE intl. symposium, San Diego,
2007.

[20] A. A. Shah, “Combining Mathematical Programming and SysML for Component Sizing as Applied
to Hydraulic Systems,” Master of Science - Mechanical Engineering, Georgia Institute of
Technology, Atlanta, GA, 2010.

[21] G. Thiers and L. McGinnis, “Logistics systems modeling and simulation,” in Proceedings of the
2011 Winter Simulation Conference (WSC), 2011, pp. 1531–1541.

[22] D. Wu, L. L. Zhang, R. J. Jiao, and R. F. Lu, “SysML-based design chain information modeling for
variety management in production reconfiguration,” Journal of Intelligent Manufacturing, pp. 1–22,
2011.

[23] B. Selic, “A systematic approach to domain-specific language design using UML,” in Object and
Component-Oriented Real-Time Distributed Computing, 2007. ISORC’07. 10th IEEE International
Symposium on, 2007, pp. 2–9.

[24] O. Batarseh and L. F. McGinnis, “System modeling in SysML and system analysis in Arena,” in
Proceedings of the 2012 Winter Simulation Conference, 2012, p. 258.

[25] O. Batarseh and L. F. McGinnis, “SysML to discrete-event simulation to analyze electronic
assembly systems,” in Proceedings of the 2012 Symposium on Theory of Modeling and Simulation-
DEVS Integrative M&S Symposium, 2012, p. 48.

[26] L. McGinnis and V. Ustun, “A simple example of SysML-driven simulation,” in Proceedings of the
2009 Winter Simulation Conference (WSC), 2009, pp. 1703–1710.

[27] L. McGinnis, E. Huang, K. S. Kwon, and V. Ustun, “Ontologies and simulation: a practical
approach,” Journal of Simulation, vol. 5, no. 3, pp. 190–201, 2011.

[28] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone, “The Concept of Reference
Architectures,” Systems Engineering, vol. 13, no. 1, 2009.

[29] Y. J. Son, A. T. Jones, and R. A. Wysk, “Automatic generation of simulation models from neutral
libraries: an example,” in Proceedings of the 2000 Winter Simulation Conference, 2000, vol. 2, pp.
1558–1567.

[30] OMG QVT, “OMG MOF 2.0 Query/View/Transformation Specification (OMG QVT) Version 1.1.”
Object Management Group, Jan-2011.

[31] OMG MOFM2T, “OMG MOF Model to Text Transformation Language (OMG MOFM2T) Version
1.0.” Object Management Group, Jan-2008.

[32] Anylogic. The AnyLogic Company. http://www.anylogic.com/.
[33] SimEvents. Mathworks. http://www.mathworks.com/products/simevents/.
[34] T. Sprock and L. F. McGinnis, “Simulation Model Generation Using Software Design Patterns,” in

Proceedings of the 2014 Winter Simulation Conference, Savannah, GA, 2014.
[35] T. Govindaraj, E. E. Blanco, D. A. Bodner, M. Goetschalckx, L. F. McGinnis, and G. P. Sharp,

“Design of warehousing and distribution systems: an object model of facilities, functions and
information,” in 2000 IEEE International Conference on Systems, Man, and Cybernetics, 2000, vol.
2, pp. 1099–1104.

[36] G. Thiers, “A Model-Based Systems Engineering Methodology to Make Engineering Analysis of
Discrete-Event Logistics Systems More Cost-Accessible,” Georgia Institute of Technology, Atlanta,
GA, 2014.

	1 Introduction
	2 Design Process for Material Handling Systems
	3 Modeling Material Handling Systems
	3.1 Formal Domain Modeling with SysML
	3.2 Automated Generation of DES
	3.3 Functional Requirements Network

	4 Analysis of Functional Requirements Networks
	4.1 Design and Implementation of Analysis Tools
	4.2 Incorporating Analysis Results into the Design Process
	4.3 Transitioning to the Embodiment Design Phase

	5 Conclusion
	References

